ACUTE KIDNEY INJURY

GOLRIZ JAFARI, M.D.

ASSOCIATE CLINICAL PROFESSOR OF MEDICINE DAVID GEFFEN SCHOOL OF MEDICINE AT UCLA OLIVE VIEW – UCLA MEDICAL CENTER

OBJECTIVES

- Epidemiology of Acute Kidney Injury (AKI)
- Definition and Diagnosis of AKI
- Evaluation of AKI
- Etiologies of AKI
- Management of AKI

AKI: DIAGNOSIS

CASE PRESENTATION

- 65-year-old male admitted with 3 weeks of increasing shortness of breath, for consideration of MVR and CABG
- History of DM type 2 x 20 years, HTN, and CAD (first MI 15 years ago)
- CKD stage 3bA3
- Known HFrEF with EF 35-30%
- 3 weeks prior to admission he developed increasing shortness of breath and was unable to walk any distance or climbs stairs. He presents to ED with SOB.
- Medications: Carvedilolol 25 mg BID, Losartan 50 mg daily, Asa 325 daily, Bumetanide 1 mg daily, Linagliptin 5 mg daily, Insulin - NPH 20qPM, Lipitor 40 mg daily

CASE PRESENTATION - EXAM

- Afebrile, BP 120/60, HR reg @60
- Alert and oriented x3 in no significant distress
- JVP to 15 cm
- Heart: RRR, + apical S3, III/VI holosystolic murmur at the apex
- Pulm: Decreased breath sounds at the bases with adjacent rales, speaking in full sentences, no tachypnea, no accessory muscle use
- Abdomen soft, nt, nondistended, + liver edge
- LE: femoral pulses 2+, trace edema at the ankles

9

CASE PRESENTATION: DATA

141 | 115 | 40

-----< 230 Ca: 8.6 P: 4.0 Mg: 1.6 0

4.8 | 21 | 2.5 Baseline Cr 1.6 mg/dl 1 month ago

WBC: 5.6 / Hb: 10.6 / Hct: 31.2 / Plt: 125

BNP: 850 pg/ml

Troponin: 1.06

EKG: NSR @ 84, left bundle branch block, new from '08 but unchanged from previous

Echo from < 1 month ago: LV dilated distal anteroseptal wall and apex akinetic, inferior wall contracts normally, and all other wall hypokinetic, EF 35 -40%, left atrium dilated 4.9 cm,3+ MR (TEE suggested 4+ MR)

DEFINITION OF AKI				
RIFLE Acute Dialysis Quality Initiative		AKIN Acute Kidney Injury Network		
	↓GFR >25%		Same as Risk	
Risk	∱SCr 1.5 x baseline	Stage 1	Scr 1.5-1.9x Baseline	
	↓UO <0.5 ml/kg/hr x 6 hours		Acute ↑Scr ≥0.3 mg/dl	
	↓GFR >50%		Same as Iniurv	
Injury	∱SCr 2 x baseline	Stage 2		
	↓UO <0.5 ml/kg/hr x 12 hours	_	Scr 2.0-2.9 x Baseline	
	↓GFR >75%			
Failure	∱SCr 3 x baseline		Same as Failure	
	↓UO <0.3 ml/kg/hr x 24 hours	Stage 3		
Loss	RRT > 4 weeks	otage J	Scr >3x Baseline Scr >4 mg/dl	
ESRD	RRT > 3 months		Acute ↑Scr >0.5 mg/d I	

CHARACTERISTICS OF AN IDEAL BIOMARKER

- Increases in the urine or blood within minutes to hours after a renal insult
- <u>Persistent elevation</u> as long as the injury is present
- Correlates quantitatively with the <u>extent of injury</u>
- Decreases as renal <u>recovery</u> takes place

A Possible Option...

LMW proteins that are freely filtered at glomerulus and reabsorbed in proximal tubule therefore presence indicates PT impairment

PROPOSED NEW DEFINITIONS OF AKI

Functional criteria	Stage	Damage criteria	
No change or sCr level increase <0.3 mg/dL and no UO criteria	15	Biomarker positive	
Increase of sCr level by ≥0.3 mg/dL	1A	Biomarker negative	
and/or UO <0.5 mL/kg/h for >6 h	1B	Biomarker positive	
Increase of sCr level by >200%	2A	Biomarker negative	
and/or UO <0.5 mL/kg/h for >12 h	2B	Biomarker positive	
Increase of sCr level by >300% (≥4.0 mg/dL with an acute increase	3A	Biomarker negative	
for >24 h or anuria for >12 h and/or acute KRT	3B	Biomarker positive	
Recommendations on AKI Biomarkers From the Acute Disease Qual Initiative Consensus Conference. JAMA Network Open. 20.			

	EVALUATION OF AKI
•	History
	Baseline Renal Function
	Preexisting Medical Conditions
	Acute events
•	Chart review
	Recent medications
	Recent contrast dye studies
	Recent hemodynamic changes, BP drops
	 Review of fluid input and output
•	Physical
	Volume status
	Cardiac exam
	Abdominal distention, bruits, mass
	Skin: turgor, rashes
	Foley patency

DIAGNOSTIC TOOLS: URINALYSIS			
Prerenal	Bland Urine High Specific Gravity >1.015 Hyaline Casts		
ATN	Nonalbumin Proteinuria No Cells Muddy Brown Casts (Granular Casts)	36	
Interstitial Nephritis	Nonalbumin Proteinuria Possible WBC's & RBC's Eosinophils		
GN	Albuminuria +RBC's & WBC's RBC & WBC Casts		
Post- Renal	Bland Epithelial or Transitional Cells +/- WBC's & RBC's		

DIAGNOSTIC TOOLS: OTHER CLUES				
LABS	PRERENAL	INTRINSIC	POST RENAL	
FeNa	<1%	>1%	>1% May be <1	
FeUrea	<35%	>35%	>35%	
BUN/Cr Ratio	>20	<20	>20	
Others	↑Uric Acid Metabolic Alkalosis		↑K+ Metabolic Acidosis	

PREVENTIVE MEASURES: PROVEN EFFICACY

Hemodynamic:

- Volume resuscitation with Isotonic Fluids
- Hydration: contrast, cisplatin, rhabdomyolysis and tumor lysis
- Hemodynamic Support with Pressors
- Avoid relative hypotension
- Timely Sepsis Treatment

Clinical modifications

- Avoidance of Nephrotoxins
- Single daily dosing of aminoglycosides
- Liposomal Amphotericin
- Low osmolar Contrast agents at lowest possible dose

INTERNATIONAL CLUB OF ASCITES CRITERIA FOR HRS:

- Diagnosis of cirrhosis and ascites
- No response after 48 hours of diuretic withdrawal and albumin 1gm/kg volume expansion
- Absence of Shock
- No current or recent Nephrotoxins
- Absence of macroscopic kidney injury:
 - Proteinuria > 500 mg/day
 - Hematuria >50 RBC/hpf
 - No structural disease on renal US

Boyer et al: REVERSE Gastroenterology 2016

HRS	HRS-AKI Type 1 HRS	HRS-NAKI Type 2 AKI
Timeframe	<2 weeks	>2 weeks
Creatinine	Doubling of Scr Cr >2.5 mg/dl	Scr >1.5 mg/dl
Trigger	Acute decompensation	Diuretic resistance
Prognosis	High mortality ~2 weeks	4-6 months
Treatment	Albumin Increase MAP> 65 • Terlipressin • Midodrine Octreotide	Close monitoring Midodrine (Octreotide) Transplant

CRS TYPE 1 TREATMENT

- Mainstay of therapy for CRS1 = diuretics and afterload reduction in order to optimize preload and afterload.
- Characteristics of patients with Worsening renal function (WRF) from ESCAPE Trial
 - ↑SBP, ↑ prevalence of HTN
 - ↑suspicion of ascites
 - ↑use of thiazides
 - ↑weight loss and rate of weight loss
- Baseline renal function appeared more predictive of long-term outcomes than WRF during hospitalization.
- Escape Trial: IAP/PAC monitoring can guide therapy
 - Vasodilators: nitroglycerin, nesiritide
 - Inotropic Agents: dobutamine, milrinone

Testani et al. Am J Cardiol 2010;106:1763-69

33

ABDOMINAL COMPARTMENT SYNDROME

39

HOW COMMON IS INTRA-ABDOMINAL HYPERTENSION & ABDOMINAL COMPARTMENT SYNDROME?

Abdominal pressure	Total Prevalence	MICU Prevalence	SICU Prevalence
IAP>12 Intra-abdominal Hypertension	58.8 %	54.4%	65%
IAP > 15	28.9%	29.8 %	27.5%
IAP > 20 Acute Compartment Syndrome	8.2%	10.5%	5.0%
	Ма	albrain, Intensive Ca	re Medicine (2004)

ABDOMINAL COMPARTMENT SYNDROME: TREATMENT

- Optimize abdominal perfusion pressure
 - Supine body
 - Sedation
- Evacuate abdominal contents
 - Paracentesis
 - Abscess & Hematoma drainage
 - NG suction, Rectal decompression
- Fluid Management
 - Colloids instead of crystalloids
 - Diuretics
 - HD/UF
- Maintain abdominal perfusion pressure
- DECOMPRESSIVE LAPAROTOMY

STRUCTURAL & FUNCTIONAL ETIOLOGIES OF OBSTRUCTION				
EXTRINSIC INTRALUMINAL INTRAMURAL				
Tumor/Mass	Stones	Neurologic: DM, spinal cord injury, MS Medications: anti- cholinergics		
ВРН	Crystals: Uric acid in TLS	Strictures: TB, Radiation, Post-surgical		
Retroperitoneal Fibrosis	Drugs: acyclovir, indinavir, MTX, sulfanamides	Schistosomiasis		
Vascular	Papillary Necrosis	тсс		
(Pregnancy)	Blood clots	Anti-cholinergics		
	BJ proteins in MM			

ATN TRIAL 2008 Randomized (n=1124) Intensive therapy Less intensive therapy (n=563) (n=561) Stable IHD 6x/week @ Kt/V of IHD 3x/week @ Kt/V of hemodynamics ~1.2/session ~1.2/session (SOFA 0-2) Unstable CVVHDF @ 35 ml/kg/hr CVVHDF @ 20 ml/kg/hr hemodynamics (SOFA 3-4) SLED 6x/week SLED 3x/week ~1.2/session ~1.2/session The primary outcome was death from any cause by day 60 Secondary endpoints included in-hospital death and recovery of kidney function ittent hemodialysis: SOFA, Sequential Organ Failure Assessment: SLED, sustained low-effici Palevsky PM, et al. N Engl J Med 2008;359:7–20. USMP/MG1/16-0096/11 2/47

CASE: 65M WITH AKI DUE TO CRS TYPE 1

- Diuretic Therapy
 - 1-2 times home dose/24 hours
 - If naive, 20-40 mg furosemide
 - If suboptimal response: add 2nd diuretic: chlorthiazide, metolozone
- Early Response Monitoring
 - Strict I/O's: check UOP response after 6 hours, goal >100 ml/hr
 - Una at 2 hrs post IV diuretic, goal >50-70 meq/L
- Close assessment of hemodynamics: HR, RR, O2, EKG, weight and signs of hypoperfusion
- Other: Continue GDMT, consider MRA especially if hypoK
- If not responsive: assess CVP, TTE, consider IAP, vasodilators or inotropic agents, Ultrafiltration/HD

SUMMARY

- Early recognition of AKI, limitations of Creatinine
- Understanding individual risk factors
- Accurate evaluation and diagnosis of AKI
- Proven beneficial therapeutic options:
 - Sepsis: Optimal fluid management, early antibiotics, hemodynamic stability
 - HRS: albumin, octreotide, vasopressin, midodrine, paracentesis
 - CRS: diuresis, close monitoring, vasodilators, inotropes
 - Avoid nephrotoxins
- No benefit of early dialysis initiation or high dose of dialysis
- Follow up after AKI and appropriate transition of care

DIAGNOSTIC TOOLS: IMAGING

•Renal Ultrasound:

•Evaluate kidney size
•Rule out obstruction
✓ Watch out for volume depletion & retroperitoneal fibrosis

With Doppler:

Renal vein thrombosisRenal artery stenosis

Bladder Ultrasound / Scan:
 Post Void Residual

•Renal Scan: •Infarct

AKI EVALUATION	ACUTE	CHRONIC
History	Acute onset	Malaise Vague
Hemoglobin	Normal	Low
Potassium	High	Normal-High
Calcium	Normal	Low
Urinalysis	Active sediment: WBC's, RBC's, Casts	Bland Hyaline/Broad/Waxy Casts
Osteopenia	No	Yes
Kidney Size (Imaging)	Normal	Small-Normal

PRIMARY ENDPOINTS

Efficacy

-Patient Global Assessment over 72 hours

Safety

-Change in SCr from baseline to 72 hours

59

SECONDARY ENDPOINTS

Change in weight over 24, 48, 72, 96 hours Freedom from signs and symptoms of congestion at 72 hours Change in SCr and weight at 72 hours

Dyspnea over 24, 48 and 72 hours

Change in SCr at 24, 48, 96 hrs, day 7 (or discharge), and day 60 Change in cystatin C at 72 hours, day 7 (or discharge) and day 60 Persistent or worsening heart failure

Development of worsening renal function (increase in SCr > 0.3 mg/dL at any time during initial 72 hours)

Treatment failure (persistent HF, worsening renal failure, or death) Index hospitalization length of stay

Death, rehospitalization, or ED visit w/i 60 days

INCLUSION-EXCLUSION CRITERIA

INCLUSION (≥18 years old)

Prior clinical dx of HF w/ daily home loop diuretic $x \ge 1$ mo Daily oral furosemide ≥ 80 mg & ≤ 240 mg (or equivalent) Identified within 24 h of admission HF defined by ≥ 1 symptom & 1 sign Anticipated need for IV loop diuretics $x \ge 48$ h

EXCLUSION

Received or planned IV vasoactive treatment (inotropes, vasodilators) or ultra-filtration for HF SBP <90 mmHg SCr >3.0 mg/dl at baseline or renal replacement therapy BNP <250 ng/ml or NT-proBNP <1000 mg/ml ACS within 4 weeks Anticipated coronary angio/procedures using IV contrast

61

BASELINE CHARACTERISTICS (1)

N = 308
66 (14)
73% (226)
72% (222)
131 (52)
35 (18)
74% (225)
57% (176)
53% (162)
51% (158)

BASELINE CHARACTERISTICS (2)

Characteristic	N = 308
ACE or ARB, %, (N)	64% (197)
Beta blocker, % (N)	83% (256)
Aldosterone antagonist % (N)	28% (86)
Systolic blood pressure, mg, mean (SD)	119 (20)
Heart rate, beats/min, mean (SD)	78 (16)
ugular venous pulse > 8 cm H_20 , % (N)	91% (267)
Rales, % (N)	58% (178)
Sodium, mg/dL, mean (SD)	138 (4)
Creatinine, mg/dL, mean (SD)	1.6 (0.5)
NT-proBNP, pg/mL, mean (SD)	7439 (7319)

SECONDARY ENDPOINTS: Q12 VS. CONTINUOUS

	Q12	Continuous	P value
Dyspnea at 72 hrs	4456	4699	0.36
% free from congestion at 72 hrs	14%	15%	0.78
Change in weight at 72 hrs	-6.8 lbs	-8.1 lbs	0.20
Net volume loss at 72 hrs	4237 mL	4249 mL	0.89
Change in NTproBNP at 72 hrs (pg/mL)	-1326	-1773	0.44
% treatment failure	38%	39%	0.88
% with Cr increase > 0.3 mg/dL within 72 hrs	17%	19%	0.64
Length of stay, days (median)	5	5	0.97

67

SECONDARY ENDPOINTS: LOW VS. HIGH INTENSIFICATION

	Low	High	P value
Dyspnea at 72 hours	4478	4668	0.041
% free from congestion at 72 hrs	11%	18%	0.091
Change in weight at 72 hrs	-6.1 lbs	-8.7 lbs	0.011
Net volume loss at 72 hrs	3575 mL	4899 mL	0.001
Change in NTproBNP at 72 hrs (pg/mL)	-1194	-1882	0.06
% Treatment failure	37%	40%	0.56
% with Cr increase > 0.3 mg/dL within 72 hrs	14%	23%	0.041
Length of stay, days (median)	6	5	0.55

RISK FACTORS FOR ABDOMINAL COMPARTMENT SYNDROME

Increased Capillary Leak	Fluid Resuscitation	Increased Abdominal Contents	Decreased Abdominal Wall Compliance
Sepsis	Massive IVF's	Ascites	Ventilator dyssynchrony
		Pancreatitis Peritonitis	Burns with eschars
Burns	Blood Products	Bleeding	
		Tumor	Tight abdominal
Trauma	Oliguria	Gastric distension Ileus	wall closures
		Enteral Feeding	Retroperitoneal
		Obesity	Bleeding

DIAGNOSTIC CRITERIA

Measurement of intra-abdominal pressure via transduction of bladder pressure

- Intra-abdominal pressure ≥20 mm Hg
- At least one organ failure

CONTRAST INDUCED NEPHROPATHY: RISK FACTORS		
Patient related:	Fable 2: Contrast-Induced I Risk Assessment Tool	Nephropathy
• Age		
• CKD	Risk Factor	Points
	Intra-aortic balloon pump	5
	Chronic CHF Age >75 years	5
Hypotension	Anemia (Hct <39 men, <36 women)	3
• CHF	Diabetes Contrast media volume	3 1 point per 100 cc ³ of contrast used
• Anemia	Serum creatinine >1.5 mg/dL or Est GER 40.59 ml /min	4
	or Est GFR 20-39 mL/min	4
 Concomitant nephrotoxins 	or Est GFR <20 mL/min	6
	Total Points CIN Risk	Dialysis Risk
Procedure-related:	less than 5 7.50% 6 to 10 14.00%	0.04%
	11 to 16 26.10%	1.09%
 Increased volume contrast 	more than 16 57.30%	12.60%
Multiple convential procedures	SOURCE: Adapted from Mehran R, et al	
• Multiple sequential procedures		
 High osmolal contrast 		
 Intra-arterial administration 		

PREVENTION: CONTRAST INDUCED AKI			
INEFFECTIVE	UNCLEAR BENEFIT	EFFECTIVE	
ССВ	NAC: Inconclusive ASN 2010: Rx: 1200 mg po bid x 2 days	IVF Isotonic saline or NaHCO3 Clear dose not defined,	
Hemofiltration	Theophylline Aminophylline	suggested: 1 cc/kg/hr ~6 hours pre & post procedure as tolerated	
Loop diuretics	ANP	Low contrast osmolarity	
Dopamine	Statins		
Mannitol	Ascorbic acid	Lowest possible	
Fenoldopam	Stop ACE/ARB	contrast dose	
Hemodialysis			
		Weisbord S. ASN Nov. 2010	

ACUTE INTERSTITIAL NEPHRITIS

Drugs :

Antimicrobials: Ampicillin, Ciprofloxacin, Methicillin, PCN, Rifampicin, Sulfonamides, Clotrimoxazole, Vancomycin

NSAIDs: ASA, Fenoprofen, Ibuprofen, Indomethacin, Naproxen, Piroxicam, Tolmetin

Acid suppressors: PPI's, Cimetidine

Others: Phenytoin, Triamterene, Furosemide, Allopurinol, Phenindione

Infections:

Direct infiltration: Leptospirosis, CMV, Candidiasis, Tuberculosis Reactive to systemic infections: Strep, Diphtheria, Hantavirus, HIV

Systemic diseases :

Metabolic diseases: Urate, Hypercalcemic and Oxalate Nephropathy Immunologic reactions: Transplant rejection, SLE, Sarcoidosis, Cryoglobulinemia, TINU

Neoplastic diseases : Lymphoproliferative diseases

DRUG INDUCED INTERSTITIAL NEPHRITIS			
TUBULAR	INTERSTITIAL	GLOMERULAR	CRYSTAL
Amino- glycosides Vancomycin Contrast	Penicillin PPI	Bisphosphonates NSAIDs Hydralazine CNI	Indinavir Acyclovir Phosphate Sulpha Ethylene Glycol
MECHANISM			
Mitochondrial Damage Tubular Toxicity	Hypersensitivity Inflammatory	Podocyte and Endothelial Cell Injury Nephrotic Syndrome TMA	Osmotic Obstructive Obstruction

AMINOGL	YCOSIDES	
 Reduced GFR usually <u>7-10 days</u> after initiating treatment <u>Proximal Tubule</u> mitochondrial damage 		
<u>Risk factors</u> :		
 Prolonged treatment Hypotension Volume depletions Other nephrotoxins CKD Hypokalemia Elderly UNa>20 meq/L, FeNA>2 Usually reversible 	Myeloid bodies	
Monitor drug levels and cro	eatinine	

DRUG INDUCED AIN

- Usually within 3 weeks
- Not Dose Dependent
- 1/3 require dialysis
- Tubular proteinuria 1-2 gm,
- +WBC's, +RBC's, +/- Eosinophils
- Only 10% with Triad: Rash, Fever, Eos >1%
- Treatment: stop offending drug, treat underlying disease/infection, supportive care, +/- steroids

